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Abstract. Frequency conversion process is studied in a medium of atoms with a Λ configuration of levels,
where transition between two lower states is driven by a microwave field. In this system, conversion efficiency
can be very high by virtue of the effect of electromagnetically induced transparency (EIT). Depending on
intensity of the microwave field, two regimes of EIT are realized: “dark-state” EIT for the weak field, and
Autler-Townes-type EIT for the strong one. We study both cases via analytical and numerical solution
and find optimum conditions for the conversion.

PACS. 42.50.Gy Effects of atomic coherence on propagation, absorption, and amplification of light –
42.65.Ky Harmonic generation, frequency conversion

1 Introduction

Frequency conversion is a useful technique for generation
of coherent tunable radiation [1]. Efficient conversion of
a continuous-wave radiation at relatively low pump in-
tensities requires high nonlinear optical susceptibility of
an (atomic) medium, which can be achieved by tuning to
resonances. However, this will also increase the medium
absorption and refraction, seriously limiting the conver-
sion efficiency. It was recently proposed [2] and demon-
strated in many experiments that this problem can be
overcome if one uses the effect of electromagnetically
induced transparency (EIT) [3]. For example, the UV ra-
diation has been generated by use of DC electric-field cou-
pling in atomic hydrogen [4]. Radiation fields have been
used to produce transparency in experiments on red to
blue frequency conversion with molecular sodium [5], and
on enhanced four-wave mixing with doped crystals [6]. Re-
cently, blue to UV [7] and UV to VUV [8] conversion in
atomic Pb vapor have been reached with almost unity
photon-conversion efficiency.

EIT is due to quantum interference in multilevel quan-
tum systems (atoms, molecules, dopants in solids) induced
by applied electromagnetic radiation. There are two ba-
sic mechanisms responsible for EIT. In the first one, the
cancellation of absorption and refraction can be explained
by creation of a coherent superposition of atomic states
(“dark” state) not excited by the radiation, and by prepa-
ration of atoms in this superposition (which is termed co-
herent population trapping – CPT) [9]. The dark state
has to be radiatively stable in order to allow for the pop-
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Fig. 1. Λ system with two
metastable states |1〉 and |2〉. ω1

and ω2 are the optical frequencies,
ωm is the microwave frequency.

ulation trapping. Therefore, the dark state must be a su-
perposition of the metastable atomic states. The second
mechanism relies on a large strength of one, “coupling”,
electromagnetic field which mixes and splits the states
(Autler-Townes effect [10]). When another, weaker
“probe” field is tuned in between the two mixed states,
it experiences reduced absorption not only because of the
splitting but also due to interference between excitation
paths to two mixed states. This mechanism works well
even in the case when the states mixed by the coupling
field decay spontaneously.

In the present paper we consider the frequency con-
version in a scheme where both mechanisms of EIT are
possible. This is a three-level Λ system (Fig. 1), where |1〉–
|3〉 and |2〉–|3〉 are the electric-dipole optical transitions,
and the microwave (m.w.) transition |1〉–|2〉 is a magnetic-
dipole one. Such systems can be realized, e.g., on D-lines
in alkali atoms, and may also be found in some molecules
and doped crystals as well [11–13].

When one of the optical fields (let say, ω1) and the
m.w. field ωm are applied to the Λ atom, they induce an
optical polarization on transition |2〉–|3〉. This leads to
the generation of the optical field with frequency ω2. In
general, this field as well as the field ω1 will be fast ab-
sorbed, if they are tuned close to the resonance. However,
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the absorption can be substantially reduced for particular
values of the microwave intensity. For the weak m.w. field,
optical waves create the dark state which is only slightly
disturbed. The strong m.w. field mixes and splits ground
states |1〉 and |2〉 so that relatively weak optical fields
experience EIT of the Autler-Townes type (as we show
below, in this case EIT is only due to splitting, not due to
interference). In the present paper we consider both cases,
treating an interaction of the e.m. radiation with atoms as
well as the propagation of radiation through the medium
in exact manner.

2 Model and general results

The optical waves propagation along the z-axis in the
medium is described by the Maxwell equations. In the
slowly varying amplitude and phase approximation, and
in continuous-wave limit these equations can be reduced
to the following form [14,15]:

dgn
dζ

= −Im(σ̃3n), (1a)

dϕn
dζ

= − 1
gn

Re(σ̃3n), (1b)

where gn = dnEn/2~γ1 are the dimensionless optical field
amplitudes (Rabi frequencies), En , ϕn and en (n = 1, 2)
are the field amplitudes, phases and unit polarization vec-
tors, respectively; γ1 is the spontaneous decay rate in a
channel |3〉 → |1〉, and dn = 〈3|en·d̂|n〉 are the matrix
elements of the electric-dipole moment operator d̂ in the
basis of atomic states |l〉, l = 1, 2, 3. The dimensionless
optical length ζ is expressed in terms of an absorption
cross-section for the optical field

ζ =
(
2πω1d

2
1/c~γ1

)
Nz =

(
3πc2/2ω2

1

)
Nz,

N is the density of active atoms.
The medium optical polarization components (the

right-hand side of Eqs. (1)) are determined by the (steady-
state) density matrix elements σ3n averaged over the
atomic velocities with the distribution w (vz), where vz
is the z-projection of the atom velocity:

σ̃3n =
∫ +∞

−∞
dvzw (vz)σ3n (vz) ,

with

σ3n (vz) = ρ3n (vz) exp [i (ωnt− knz + χn)] ,

where ρ3n ≡ 〈3|ρ̂|n〉, ρ̂ is the atomic density matrix. The
phase χn is the sum of the e.m. field phase ϕn and the
phase ϑn of the atomic dipole moment dn = |dn| eiϑn :
χn = ϕn + ϑn. Similar quantities are determined for
the microwave transition: Rabi frequency gm = µH/2~γ1

with the m.w. field amplitude H and phase ϕm; matrix
elementµ ≡ 〈1|µ̂|2〉 = |µ| eiϑm of the magnetic-dipole mo-
ment µ̂, and the m.w. transition phase χm = ϕm + ϑm.

Presence of the field on |1〉–|2〉 transition and/or both
optical fields means, corresponding to the Maxwell equa-
tions, that the m.w. wave should also change along the
propagation path. The EIT-assisted generation of a mi-
crowave radiation has recently been observed in atomic Cs
vapor [16]. We, however, will not consider this effect here
since the changes are of the order of ∆g2

m ≈ (ωm/ω1) g2
1 ≈(

10−8 ÷ 10−5
)
g2

1 at the most [17] which is negligible in
the present context. Moreover, the propagation direction
of the m.w. wave (traveling or standing one in a m.w.
cavity) can be chosen perpendicular to the z-axis.

Let us now consider the case when all three e.m. fields
are in resonance with corresponding transitions. This sit-
uation can be studied analytically if we additionally sup-
pose equal spontaneous relaxation rates γ1 = γ2 ≡ γ, zero
relaxation rate of the coherence between states |1〉 and
|2〉: Γ = 0, and zero atomic velocity vz = 0. Solution of
the density-matrix equations for this case is given in the
earlier work of one of us [14]. Nevertheless, we display it
here again since it is important for further consideration:

Im(σ31) = −
g2gmg

2
0

(
g2

0 − 2g2
m

)
2L

sinΦ

+
g2

mg1

(
g2

1 − g2
2 + 2g2

2 sin2 Φ
)

L
, (2a)

Im(σ32) =
g1gmg

2
0

(
g2

0 − 2g2
m

)
2L

sinΦ

−
g2

mg2

(
g2

1 − g2
2 − 2g2

1 sin2 Φ
)

L
, (2b)

Re(σ31) =
g2gm

(
g2

1 − g2
2

) (
g2

0 − 2g2
m

)
2L

cosΦ

+
g2

mg1g
2
2

L
sin 2Φ, (3a)

Re(σ32) = −
g1gm

(
g2

1 − g2
2

) (
g2

0 − 2g2
m

)
2L

cosΦ

− g2
mg

2
1g2

L
sin 2Φ, (3b)

and the excited state population is given by

ρ33 =
g2

m

[(
g2

1 − g2
2

)2 + 4g2
1g

2
2 sin2 Φ

]
L

, (4)

with

L =
1
2
g6

0 + g2
m

[
3
(
g2

1 − g2
2

)2 − 2g4
0 + 2g2

0

+ 12g2
1g

2
2 sin2 Φ

]
+ 2g2

0g
4
m,

g2
0 = g2

1 + g2
2,

and the relative phase Φ is determined as

Φ = (χ1 − χ2)− χm. (5)
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One sees from equations (2–4), that the medium is abso-
lutely transparent and not refractive for

Φ = πn, n = 0, 1, 2, ... (6)

and

g1 = g2. (7)

These are exactly the conditions for the dark state in
closed Λ system [14,18–20].

For arbitrary optical field amplitudes and phases, how-
ever, the refraction and absorption (or amplification) of
individual frequency components can be substantial. Here
we are interested in generation of the optical field ω2 with
lowest possible losses of the e.m. energy. The total energy
flow is proportional to intensity I = I1 + I2 of the op-
tical waves. The intensity is expressed in terms of Rabi
frequency as

In = (c/8π)E2
n =

(
2~ω3

n/3πc
2
)
g2
nγ,

so that

dI
dz
∼
(

dg2
1

dζ
+

dg2
2

dζ

)
= −2 (g1Im (σ31) + g2Im (σ32))

= −2ρ33,

where the last equality follows from the steady-state den-
sity matrix equations [14]. Thus, we arrive at almost obvi-
ous conclusion that dissipation of the e.m. energy is small
when the excited state population is small: ρ33 � 1. Anal-
ysis of the expression (4) shows that, for arbitrary g1, g2

and Φ, this is the case for two ranges of the m.w. Rabi
frequency: gm � 1, g0 and gm � 1, g0. These values cor-
respond to EIT of the CPT-type and the Autler-Townes-
type, respectively.

The change of the fields can be calculated analytically
in present situation [21]. An interesting feature of the res-
onant case is that the phase equation can be solved for
arbitrary values of gm. The propagation equation for the
relative phase is as follows (if we neglect the change of the
m.w. field phase ϕm and the atomic dipole phases ϑl along
the propagation path):

dΦ
dζ

= −
(

1
g1

Re(σ31)− 1
g2

Re(σ32)
)
.

One can obtain from equations (2, 3) that

1
g1

Re(σ31)− 1
g2

Re(σ32) =
cosΦ
sinΦ

g2Im(σ31)+g1Im(σ32)
g1g2

so that

dΦ
dζ

= −cosΦ
sinΦ

1
g1g2

(g2Im(σ31) + g1Im(σ32))

=
cosΦ
sinΦ

1
g1g2

d (g1g2)
dζ

, (8)

which can be integrated to give the constant of motion:

g1g2 cosΦ = Π. (9)

The constant Π is determined from the boundary condi-
tions at the ζ = 0. In particular, when one optical field
is generated, g2(ζ = 0) = 0 , we have constant value of
cosΦ:

cosΦ(ζ) = 0. (10)

3 Frequency conversion assisted
by the dark-state EIT

We now consider both EIT cases separately. For a weak
m.w. field, gm � 1, the density matrix elements to the
second order in gm are:

Im(σ31) = −g2gm

g2
0

sinΦ+
2g2

mg1

(
g2

1 − g2
2 + 2g2

2 sin2 Φ
)

g6
0

,

(11a)

Im(σ32) =
g1gm

g2
0

sinΦ−
2g2

mg2

(
g2

1 − g2
2 − 2g2

1 sin2 Φ
)

g6
0

·

(11b)

For the case of the field ω2 generation, the dissipation of
total optical energy is proportional to (taking into account
Eq. (10)):

dg2
0

dζ
= −4g2

m

g2
0

,

which has a solution

g4
0 = g4

0(ζ = 0)− 8g2
mζ. (12)

If we neglect this slow decay (which would simply corre-
spond to neglect of terms of the second order in gm), we
obtain the following amplitude equations

dg1

dζ
= −g2gm

g2
0

g2
2 = g2

0 − g2
1

which can be easily solved:

g2
1 = g2

0 cos2

(
gm

g2
0

ζ

)
, (13a)

g2
2 = g2

0 sin2

(
gm

g2
0

ζ

)
. (13b)

The solution indicates that the e.m. energy is transferred
back and forth between two optical waves as the opti-
cal length increases. The period of these oscillations is
ζπ = πg2

0/gm, which is much smaller than the characteris-
tic length of the total energy dissipation:

ζdiss ≈ g2
0(ζ = 0)/4g2

m,

cf. equation (12). Therefore, very efficient conversion takes
place at

ζmax = πg2
0(ζ = 0)/2gm. (14)
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The loss of the optical intensity is ∆I / I = 2πgm � 1 at
this point.

The reason for such an efficient process is a prepara-
tion of the medium in almost dark state. If the e.m. field
between the states |1〉 and |2〉 is not applied then the dark
state in Λ system is [9]:

|D〉 =
g2

g0
|1〉 − exp (iΦ)

g1

g0
|2〉 . (15)

Therefore, the population of the dark state can be ex-
pressed in terms of the ground-state density matrix
elements:

ρDD =
g2

2

g2
0

ρ11 +
g2

1

g2
0

ρ22 −
2g1g2

g2
0

Re (σ21 exp (−iΦ)) ,

which are, to the first order in gm,

Im(σ21) =
g1g2

g2
0

sinΦ−
gm

(
g2

1 − g2
2

)
g4

0

,

Re(σ21) = −g1g2

g2
0

cosΦ,

ρ11 =
g2

2

g2
0

− 2gmg1g2

g4
0

sinΦ,

ρ22 =
g2

1

g2
0

+
2gmg1g2

g4
0

sinΦ.

Thus, ρDD = 1 − O
(
g2

m

)
, which means that atoms all

over the medium are in (almost) dark state, despite of
the spatial changes of individual optical intensities. It is
interesting that a large lower-level coherence is not estab-
lished in advance (since g2(ζ = 0) = 0). However, as soon
as ω2 wave is generated, the coherence emerges, and the
medium is prepared in the nonabsorbing state.

Even in real situation, when both the relaxation rate
Γ of the coherence between states |1〉 and |2〉 and the
Doppler broadening are present, the parameters of the
process are in fairly good agreement with analytical re-
sults. Below we present numerical calculations assuming
that the medium is a vapor of 23Na atoms interacting with
radiation in a Λ configuration of levels

32S1/2(F = 1)−32S1/2(F = 2)−32P1/2(F ′ = 2).

When the polarization of all e.m. waves is linear (say, along
the y-axis) and external magnetic field is zero, there are
two identical Λ systems of Zeeman sublevels with mag-
netic numbers mF = −1 and mF = +1. In the absence of
m.w. field the sublevel F = 2,mF = 0 is not coupled by
radiation. Hence, a large part of atomic population can
be optically pumped into the F = 2,mF = 0 state and
switched off the interaction. This problem is naturally re-
solved when the m.w. radiation is present: the population
getting into F = 2,mF = 0 is transferred by m.w. field
to the state F = 1,mF = 0 from where it is pumped
back into Λ systems. Therefore, in numerical simulations
we don’t take into account the whole hyperfine structure
and consider atoms as single Λ systems.
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Fig. 2. Spatial variations of: (a) optical field intensities I1
(solid curve) and I2 (dashed curve) in units of input inten-
sity I0 ≡ I1 (ζ = 0), (b) the relative phase Φ, in a vapor of
23Na atoms interacting with radiation in a Λ configuration of
levels 32S1/2(F = 1)−3 2S1/2(F = 2)−32P1/2. Vapor temper-
ature T = 440 K, Γ = 10−4γ, detunings ∆1 = ∆2 = 0, Rabi
frequencies of input fields g1 (ζ = 0) = 2.0, gm = 0.02.

In Figure 2 the spatial dependence of the field inten-
sities and the phase Φ are plotted for Na temperature
T = 440 K (this gives the saturated vapor density of
N = 4.42×1011 cm−3 and corresponds to a most probable
velocity of atoms of vp = 5.64 × 104 cm/ s), Γ = 10−4γ
(1 kHz), input Rabi frequencies g1 (ζ = 0) = 2.0, gm =
0.02 (corresponding to intensities of I1 = 12.6 mW/ cm2

and Im = 1.26µW/cm2). We see that dynamics of the
intensities and the phase does not change qualitatively
as compared to the case of negligible decay of the dark
state. The behavior of the phase Φ in Figure 2b follows the
law cosΦ(ζ) = 0 obtained analytically. The jumps in the
phase occur at points where the intensity of the field be-
ing absorbed approaches zero, according to equation (1b).
The ω2 wave is generated and reaches its maximum at
the length ζ = 340 (this corresponds to the real length
of the gas cell of z = 1.9 cm). This value is quite close
to that calculated from analytical results, equation (14),
ζmax = 314. The maximum intensity of the ω2 wave is
I2/I1(ζ = 0) = 0.952 which is slightly below the value
0.966 calculated from equation (12) because of an addi-
tional dissipation due to decay of the dark state with the
rate Γ . Obviously, this rate must be sufficiently small in
order to allow for the population trapping in |D〉, namely
it must be much smaller than the optical pumping rate
into the dark state:

Γ/γ � g2
0

1 +∆2
· (16)

Here, detuning ∆ includes the Doppler shift:

γ∆ = ∆1 − k1vz ≈ ∆2 − k2vz,

where ∆n = ωn − (E3 − En) /~ are the laser frequency
detunings from transitions |n〉–|3〉, (n = 1, 2), En is the
eigenenergy of the atomic state |n〉. For the resonance
∆1 = ∆2 = 0 and large Doppler broadening k1vp � γ,
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are the same as in Figure 2.

condition (16) reduces to

g2
0 �

Γ

γ

(
k1vp

γ

)2

. (17)

The better this condition is satisfied, the higher the effi-
ciency of frequency conversion is. The rate Γ is determined
by m.w. field fluctuations, atomic collisions and other ran-
dom phase disturbing processes. For parameters of the
proposed here experiment, Γ can be very small. Recently,
the rate Γ < 50 Hz has been observed in experiment [22].

Inasmuch as CPT is a basis for the considered above
scheme, the generation occurs under quite restrictive
conditions on e.m. wave frequencies. It is well known
that CPT takes place when the optical frequencies are
in the narrow range (“black line”) around two-photon
resonance [9]:

∆2 = ∆1. (18)

Considering that the wave E2 is always generated at fre-
quency ω2 = ω1 − ωm (simply due to photon energy
conservation), the condition (18) tells us that the gen-
eration takes place only if the m.w. field frequency is in
the narrow range around resonance with transition |1〉–|2〉:
ωm = (E2 − E1) /~. Figure 3 demonstrates this fact. The
width of the generation peak (width of the black line) is
determined by the pumping rate into the dark state [9].
In the presence of large Doppler broadening this width is
of the order of δωm ≈ γg2

0/ (k1vp/γ)2, which is a few kHz
for parameters of Figure 3.

It is interesting that, at the same time, the large
Doppler broadening allows for a broad tuning of the gen-
erated wave. In Figure 4 we have plotted dependence of
the generated intensity on detuning ∆1 (for fixed ωm =
(E2 − E1) /~) at the optical length ζ = 340. One can see
that conversion efficiency remains fairly large for detun-
ings of the order of the Doppler broadening (few GHz for
Na vapor). This is because the CPT survives even at large
common detunings ∆2 = ∆1 as long as the condition (16)
is satisfied.
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Fig. 4. Dependence of the generated intensity I2/I0 on de-
tuning ∆1 (in units of the excited state relaxation rate γ) for
fixed ωm = (E2 − E1) /~, at the optical length ζ = 340. Other
parameters are the same as in Figure 2.

4 Frequency conversion assisted
by the Autler-Townes-type EIT

The second type of EIT allowing efficient frequency con-
version in the Λ medium takes place at strong m.w. fields,
gm � 1, g0. In this case, the absorption coefficients to the
second order in (1/gm) are:

Im(σ31) =
g2

2gm
sinΦ+

g1

(
g2

1 − g2
2 + 2g2

2 sin2 Φ
)

2g2
mg

2
0

, (19a)

Im(σ32) = − g1

2gm
sinΦ−

g2

(
g2

1 − g2
2 − 2g2

1 sin2 Φ
)

2g2
mg

2
0

·

(19b)

The energy dissipation is determined by the equation

dg2
0

dζ
= − g

2
0

g2
m

,

with a solution

g2
0 = g2

0(ζ = 0) exp
(
−g−2

m ζ
)
. (20)

Again, if we neglect the slow total energy dissipation (i.e.,
we neglect terms to the second order in 1/gm in Eq. (19a)),
we obtain the solution of amplitude equations, very similar
to the CPT case:

g2
1 = g2

0 cos2

(
1

2gm
ζ

)
, (21a)

g2
2 = g2

0 sin2

(
1

2gm
ζ

)
. (21b)

Here, the period of intensity oscillations is ζπ = 2πgm,
which is again much smaller than the characteristic length
of the total energy dissipation: ζdiss ≈ g2

m. Maximum en-
ergy transfer to the ω2 field occurs at

ζmax = πgm. (22)
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The loss of the optical intensity is

∆I / I = 1− exp (−π/gm)� 1

at this point.
Numerical calculations of the optical waves propaga-

tion give the results which are in very good agreement with
analytical ones, and which are qualitatively very similar
to the CPT-case in Figure 2. The physical mechanism is,
however, different. The CPT effect does not work at strong
m.w. fields except under the specific conditions (6, 7). This
can be proved by considering the density matrix elements.
It turns out that for this case the ground state popula-
tions are equal to ρ11 = ρ22 = 0.5 up to the second order
in (1/gm),

Im(σ21) = O
(
1/g2

m

)
and

Re(σ21) = −
(
g1g2/g

2
0

)
cosΦ+O

(
1/g2

m

)
.

Therefore, the atomic population is, for arbitrary g1, g2

and Φ, not all pumped into the dark state:

ρDD = 1/2 +
(
2g2

1g
2
2/g

4
0

)
cos2 Φ < 1.

Under the condition (10) taking place at the generation,
the ground-state coherence σ21 is negligibly small and
ρDD = 1/2.

The strong reduction of optical absorption in present
case may be explained, for example, in a following way.
One can view the ground states |1〉 and |2〉 excited by
m.w. field as two dressed states:

|±〉 =
1√
2

(|1〉 ± exp (iχm) |2〉) , (23)

separated by 2gm through the AC-Stark splitting or
Autler-Townes effect [10]. Total absorption of weak
optical waves ω1 and ω2 can be monitored by the popula-
tion of excited state |3〉 (Fig. 5). The absorption is maxi-
mum when the optical fields are tuned to resonance with
transition from state |3〉 to either |+〉 or |−〉. When the
optical fields are tuned to the middle of the two dressed
states (i.e. to the resonance with corresponding transitions
|3〉–|1〉 and |3〉–|2〉), two effects contribute to the value of
absorption. One is the AC-Stark splitting, which reduces
absorption, and the other is the interference between the
two transition paths of |3〉–|+〉 and |3〉–|−〉 made by both
optical fields. The interference is destructive under the
conditions (6, 7). Note that in this case either |−〉 or |+〉,
depending on whether Φ is 0 or π, coincides with the dark
state |D〉, equation (15). However, the generation implies
cosΦ = 0, producing enhanced absorption by constructive
interference. Nevertheless, the excited state population ρ33

remains on a level of g2
0/g

2
m � 1 (cf. Eq. (4)), given by

the wings of the dressed state absorption peaks.
Thus, a very weak optical absorption at strong m.w.

field is only due to the Autler-Townes effect. This mech-
anism requires large m.w. intensities, but it has some ad-
vantages over the CPT-case. First of all, it is more ro-
bust: the relaxation Γ does not play so important role,
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Fig. 5. Population of the excited state |3〉 as a function of
common optical detuning∆1 = ∆2 for fixed ωm = (E2 − E1) /~.
Rabi frequencies are g1 = 0.3, g2 = 0.1, gm = 20.0, relative
phase Φ = π/2, Γ = 10−3γ.

and the range of m.w. frequency ωm where generation oc-
curs is much broader (it is of order of gm) as compared
to the case of weak m.w. field. Similar to the case with
a weak m.w. field, there is a possibility to tune the gen-
erated radiation over the Doppler contour, and here the
tuning is not as sensitive to the value of Γ as in for-
mer case. Note that here the optical length scales are
determined only by gm and do not depend on the input
intensity, g2

0(ζ = 0). Therefore, the conversion is maxi-
mum at the same length for different input intensities.
This is especially important for experiments with nonuni-
form light beams, e.g., with the Gaussian intensity profile.
Another important advantage is that this mechanism can
be applied not only to Λ-system, but also to a V-scheme
with one ground and two excited states coupled by m.w.
field. We believe that the optical frequency conversion may
be observed experimentally, for example, in a V-system of
Pr3+: YAlO3 solid where the reduced absorption was re-
cently demonstrated [13].

Finally, Figure 6 represents the dependence of gener-
ated wave on Rabi frequency gm of the m.w. field at fixed
optical length ζ = 340. This figure clearly demonstrates
two ranges of gm where EIT and, correspondingly, efficient
frequency conversion take place.

5 Conclusion

We have described a scheme for efficient optical conver-
sion based on EIT in atomic Λ system where the inter-
action loop is closed by a microwave field. Depending on
the m.w. intensity, two mechanisms of EIT work in this
scheme: CPT and Autler-Townes effects. Intensity of the
m.w. field plays also a role of controlling parameter in the
conversion process – it determines optical length scales
of the process, cf. equations (14, 22), as well as the de-
gree of the total energy dissipation, cf. equations (12, 20).
An optimal choice is always possible, which should al-
low an experimental realization of the proposed scheme



D.V. Kosachiov and E.A. Korsunsky: Efficient microwave-induced optical frequency conversion 463

0 20 40 60 80

0,0

0,2

0,4

0,6

0,8

1,0
In

te
ns

ity
 I 2 /

 I 0

m.w. Rabi frequency g
m

0,0 0,1

0,0

0,5

1,0

 

Fig. 6. Dependence of the generated intensity I2/I0 on the
Rabi frequency of microwave field gm at the optical length
ζ = 340. Other parameters are the same as in Figure 2. Inset
shows the range of small gm.

in different systems. Since the EIT-assisted frequency con-
version combines large nonlinearity with substantially re-
duced spontaneous emission noise, one may expect that
the generated signal will be fluctuation-correlated with
the pump wave [23]. Such correlations persist even on a
quantum level [24]. Therefore, the present scheme can be
used for generation of two phase-correlated optical waves,
which would be an alternative to conventional methods us-
ing electro- or acousto-optical modulators, or direct cur-
rent modulation in laser diodes. Other possible applica-
tions may be optical phase conjugation [25] and generation
of squeezed light [26].
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